IMPORTANT FORMULAE of SOLUTIONS

In the formulae given below A represents solvent and B represents solute, also

MA = Molar mass of solvent MB = Molar mass of solute

WA = Mass of solvent VB = volume of solute

V = Volume of solution d = density of solution.

1(a). Mass of percentage (w/w) = \displaystyle \frac{{{{W}_{A}}}}{{{{W}_{A}}+{{W}_{B}}}}\times 100

(b). Volume percentage (v/v) = \displaystyle \frac{{{{V}_{A}}}}{{{{V}_{A}}+{{V}_{B}}}}\times 100

(c). Mass by volume percentage (W/v) = \displaystyle \frac{{{{W}_{B}}\times 100}}{{V\left( {mL} \right)}}

(d). Parts per million (ppm) = \displaystyle \frac{{{{W}_{B}}}}{{{{W}_{A}}+{{W}_{B}}}}\times {{10}^{6}}

2. Mole fraction of A, XA = \displaystyle \frac{{{{n}_{A}}}}{{{{n}_{A}}+{{n}_{B}}}}

mole fraction of B, XB = \displaystyle \frac{{{{n}_{B}}}}{{{{n}_{A}}+{{n}_{B}}}}

XA + XB = 1

3. Molarity (M) = \displaystyle \frac{{\text{Moles of solute}}}{{\text{Volume of solution in litre}}} = \displaystyle \frac{{{{n}_{B}}}}{{{{V}_{{\left( L \right)}}}}} = \displaystyle \frac{{{{W}_{B}}}}{{{{M}_{B}}\times {{V}_{{\left( L \right)}}}}}

4. Molality (m) = \displaystyle \frac{{\text{Moles of solute}}}{{\text{Moles of solvent in kg}}} = \displaystyle \frac{{{{n}_{B}}}}{{{{W}_{A}}}}\times 1000 = \displaystyle \frac{{{{W}_{B}}\times 1000}}{{{{M}_{B}}\times {{W}_{A}}}}

5. Normality (N) = \displaystyle \frac{{\text{Gram Equivalents of solute}}}{{\text{Volume of solution in litre}}} = \displaystyle \frac{{{{W}_{B}}}}{{\text{Gram Equivalent Mass of solute }\times {{\text{V}}_{{\left( L \right)}}}}}

6. Relationship between Molarity and Normality

The normality (N) and molarity (M) of a solution are related as follows :

Normality × Equivalent. mass (solute) = Molarity × Molar mass (solute)

7. Relationship between Molarity and Mass percentage (p)

If p is the mass percentage and d is the density of the solution then

Molarity = \displaystyle \frac{{p\times d\times 10}}{{\text{Mol}\text{. mass }\left( {Solute} \right)}}

Normality = \displaystyle \frac{{p\times d\times 10}}{{\text{Eq}\text{. mass }\left( {Solute} \right)}}

8. Dilution formula: If the solution of some substance is diluted by adding solvent from volume V1 to volume V2, then

M1V1 = M2V2 Similarly, N1V1 = N2V2

9. Raoult’s law for volatile solute

pA = pA0 xA and pB0 xB

where pA and pB are partial vapour pressures of component ‘A’ and component ‘B’ in the solution.

PA0 and pB0 are vapour pressures of pure components ‘A’ and ‘B’ respectively.

Total vapour pressure = p = pA + pB = pA0 xA + pB0 xB

10. Raoult’s law for non-volatile solute

\displaystyle \frac{{P_{A}^{0}-P}}{{P_{A}^{0}}} = XB = \displaystyle \frac{{{{n}_{B}}}}{{{{n}_{A}}+{{n}_{B}}}} (For a dilute solution nB << nA)

11. Elevation in boiling point.

∆Tb = Kb × m

\displaystyle {{M}_{B}}=\frac{{{{K}_{b}}\times {{W}_{B}}\times 1000}}{{\Delta {{T}_{b}}\times {{W}_{A}}}}

where, \displaystyle \Delta {{T}_{b}}={{T}_{b}}-T_{b}^{0}

12. Depression in freezing point.

∆Tf = Kf × m

\displaystyle {{M}_{B}}=\frac{{{{K}_{f}}\times {{W}_{B}}\times 1000}}{{\Delta {{T}_{f}}\times {{W}_{A}}}}

where, \displaystyle \Delta {{T}_{f}}=T_{f}^{0}-{{T}_{f}}

13. Osmotic pressure (π).

π = cRT where ‘c’ is molarity.

Leave a Reply

Your email address will not be published. Required fields are marked *