MCQ WITH ANSWER

  1. One branch of \displaystyle {{\cos }^{{-1}}}x other than the principal value branch corresponds to:

(a) \displaystyle \left[ {\frac{\pi }{2},\frac{{3\pi }}{2}} \right]

(b) \displaystyle \left[ {\pi ,2\pi } \right]-\left\{ {\frac{{3\pi }}{2}} \right\}

(c) (-π,0)

(d) [2π, 3π]

Ans . (d)

  • The principal value of \displaystyle \left[ {\pi ,2\pi } \right]-\left\{ {\frac{{3\pi }}{2}} \right\} is

(a) \displaystyle \frac{{2\pi }}{9}

(b) \displaystyle -\frac{{2\pi }}{9}

(c) \displaystyle \frac{{34\pi }}{9}

(d) \displaystyle \frac{\pi }{9}

     Ans. (a )              

3.   If \displaystyle {{\cos }^{{-1}}}x-{{\sin }^{{-1}}}x=0 then the value of x is:

(a) 0

(b) 1

(c) \displaystyle \frac{1}{{\sqrt{2}}}

(d) \displaystyle \frac{{\sqrt{3}}}{2}

Ans. (c)

4. The value of \displaystyle {{\cos }^{{-1}}}\left( {\cos \left( {\frac{{13\pi }}{6}} \right)} \right)

            (a) \displaystyle \frac{{13\pi }}{6}

            (b) \displaystyle \frac{{7\pi }}{6}

            (c) \displaystyle \frac{{5\pi }}{6}

            (d)  \displaystyle \frac{\pi }{6}

Ans.(d)

5. The value of \displaystyle {{\sin }^{{-1}}}\left( {\frac{1}{2}} \right)+2{{\cos }^{{-1}}}\left( {\frac{{-\sqrt{3}}}{2}} \right) is

(a) \displaystyle \frac{\pi }{2}

(b) \displaystyle -\frac{\pi }{2}

(c) \displaystyle \frac{{3\pi }}{2}

(d)none of these

Ans. (d)

ONE MARK QUESTIONS WITH ANSWERS

1. the value of \displaystyle {{\sin }^{{-1}}}\left( {\sin \frac{{3\pi }}{5}} \right).

Ans . \displaystyle {\frac{{2\pi }}{5}}

2. Evaluate \displaystyle {{\cos }^{{-1}}}\left( {\cos \frac{{7\pi }}{6}} \right)

Ans. \displaystyle {\frac{{5\pi }}{6}}

3. Which is greater tan1 or tan-1 .

Ans. tan1 > tan-1

4. \displaystyle {{\sin }^{{-1}}}\left( {\sin \left( {\frac{{2\pi }}{3}} \right)} \right)=\frac{{2\pi }}{3} state true or false.

Ans. False

5. Domain of function sin-1x is (-1,1), state true or false.          

Ans. False

6. If \displaystyle {{\tan }^{{-1}}}x={{\sin }^{{-1}}}\frac{1}{{\sqrt{2}}}, then x is …….

Ans. 1

7. Find the value of \displaystyle \cot \left( {{{{\tan }}^{{-1}}}a+{{{\cot }}^{{-1}}}a} \right)

Ans. 0

Assertion- Reason Question

Assertion(A): Principal value branch of x is \displaystyle \left[ {-\frac{\pi }{2},\frac{\pi }{2}} \right]

Reason(R): In this branch the function is bijective

  • Both A and R are true and R is the correct explanation for A.
  • Both A and R are true and R is not the correct explanation for A.

(c) A is true but R is false.

(d) A is false but R is true.

Ans: (b)

THREE LEVELS OF GRADED QUESTIONS

Level I (Very Short Type Question)

1. Find the principal value of \displaystyle {{\sin }^{{-1}}}\left( {\frac{{-1}}{2}} \right)

Ans \displaystyle -\frac{\pi }{6}

2. Find the principal value of \displaystyle {{\cos }^{{-1}}}\left( {\frac{{\sqrt{3}}}{2}} \right)

Ans \displaystyle \frac{\pi }{6}

3. Find the principal value of \displaystyle {{\tan }^{{-1}}}\left( {-\sqrt{3}} \right)

Ans \displaystyle \frac{{4\pi }}{3} .

4. Find the value of \displaystyle {{\tan }^{{-1}}}\left( 1 \right)+{{\sin }^{{-1}}}\left( {\frac{{-1}}{2}} \right).

Ans \displaystyle \frac{\pi }{{12}}

5. Find the value of \displaystyle {{\tan }^{{-1}}}\left( {\sqrt{3}} \right)-{{\cot }^{{-1}}}\left( {-\sqrt{3}} \right).

Ans \displaystyle \frac{\pi }{{12}}

6. Find the value of \displaystyle \sin \left( {\frac{\pi }{3}-{{{\sin }}^{{-1}}}\left( {\frac{{-1}}{2}} \right)} \right)

Ans 1

7. Find the principal value of \displaystyle {{\tan }^{{-1}}}\sqrt{3}-{{\sec }^{{-1}}}\left( {-2} \right)

Ans \displaystyle \frac{\pi }{3}

Level Il (SHORT TYPE QUESTION)

1. Find the value of \displaystyle {{\tan }^{{-1}}}\left( 1 \right)+{{\cos }^{{-1}}}\left( {\frac{{-1}}{2}} \right)+{{\sin }^{{-1}}}\left( {\frac{{-1}}{2}} \right)

Ans \displaystyle \frac{{3\pi }}{4}

2. Find the value of \displaystyle \tan \left\{ {{{{\sin }}^{{-1}}}\left( {\frac{3}{5}} \right)+{{{\cot }}^{{-1}}}\left( {\frac{3}{2}} \right)} \right\}

Ans \displaystyle \frac{{17}}{6}

3. Write in simplest form: \displaystyle \tan \left( {\frac{{\cos x-\sin x}}{{\cos x+\sin x}}} \right)

Ans \displaystyle \frac{\pi }{4}x

4. Show that \displaystyle {{\sin }^{{-1}}}\left( {\frac{3}{5}} \right)+-{{\sin }^{{-1}}}\left( {\frac{8}{{17}}} \right)={{\cos }^{{-1}}}\left( {\frac{{84}}{{85}}} \right)

5. prove that \displaystyle {{\cot }^{{-1}}}\left[ {\frac{{\sqrt{{1+\sin x}}+\sqrt{{1-\sin x}}}}{{\sqrt{{1+\sin x}}-\sqrt{{1-\sin x}}}}} \right]=\frac{x}{2}, 0<x<\displaystyle \frac{\pi }{2}

6. Prove that \displaystyle {{\tan }^{{-1}}}\left( x \right)+{{\tan }^{{-1}}}\left( {\frac{{2x}}{{1-{{x}^{2}}}}} \right)={{\tan }^{{-1}}}\left( {\frac{{3x-{{x}^{3}}}}{{1-3{{x}^{2}}}}} \right)

Level III (Long Type Question)

1. If \displaystyle {{\sin }^{{-1}}}\left( {1-x} \right)-2{{\sin }^{{-1}}}x=\frac{\pi }{2} find the value of x.

2. Show that \displaystyle {{\sin }^{{-1}}}\frac{{12}}{{13}}+{{\cos }^{{-1}}}\frac{4}{5}+{{\tan }^{{-1}}}\frac{{63}}{{60}}=\pi

3. If \displaystyle {{\tan }^{{-1}}}x+{{\tan }^{{-1}}}y+{{\tan }^{{-1}}}z=\frac{\pi }{2}, then show that xy+yz+zx=l

4. Prove that \displaystyle \cos \left( {{{{\sin }}^{{-1}}}\frac{3}{5}+{{{\cot }}^{{-1}}}\frac{3}{2}} \right)=\frac{6}{{5\sqrt{{13}}}}

5. Solve: \displaystyle \cos \left( {{{{\tan }}^{{-1}}}x} \right)=\sin \left( {{{{\cot }}^{{-1}}}\frac{3}{4}} \right)

6. Simplify: \displaystyle {{\sin }^{{-1}}}\left( {\frac{{3x+4\sqrt{{1-{{x}^{2}}}}}}{5}} \right)

7. Prove that \displaystyle \left[ {{{{\cot }}^{{-1}}}\left\{ {\cos \left( {{{{\tan }}^{{-1}}}x} \right)} \right\}} \right]=\sqrt{{\frac{{\left( {{{x}^{2}}+1} \right)}}{{\left( {{{x}^{2}}-1} \right)}}}}

8. If \displaystyle {{\tan }^{{-1}}}a+{{\tan }^{{-1}}}b+{{\tan }^{{-1}}}c=\pi prove that a + b + c = abc

Case based Question

Two men on either side of a temple of 30 m high observe its top at the angles of elevation a and ß respectively,

The distance between the two men is \displaystyle 40\sqrt{3} m and the distance between the first person A and the temple is \displaystyle 30\sqrt{3} m.

Answer the following questions using the above information.

(i) ∠CAB = α =

(a) \displaystyle \left( {\frac{2}{{\sqrt{3}}}} \right)       (b) \displaystyle \left( {\frac{1}{2}} \right)            (c) 2  (d) \displaystyle \left( {\frac{{\sqrt{3}}}{2}} \right)

(ii) ∠CAB = α =

(a) \displaystyle \left( {\frac{1}{5}} \right)         (b) \displaystyle \left( {\frac{2}{5}} \right)            (c) \displaystyle \left( {\frac{4}{5}} \right)   (d) \displaystyle \left( {\frac{{\sqrt{3}}}{2}} \right)

(iii) ∠BCA = β =

(a) \displaystyle \left( {\frac{1}{2}} \right)         (b) 2     (c) \displaystyle \left( {\frac{1}{{\sqrt{3}}}} \right)          (d) \displaystyle \left( {\sqrt{3}} \right)

(iv) ∠ABC =

(a) \displaystyle \frac{\pi }{4}   (b) \displaystyle \frac{\pi }{6}   (c) \displaystyle \frac{\pi }{2}   (d) \displaystyle \frac{\pi }{3}

     Ans:. (i) (b)                      (ii) (d)                          (iii) (d)                (iv) (c)

Leave a Reply

Your email address will not be published. Required fields are marked *