MCQ WITH ANSWER
- One branch of
other than the principal value branch corresponds to:
(a) ![]()
(b) ![]()
(c) (-π,0)
(d) [2π, 3π]
Ans . (d)
- The principal value of
is
(a) ![]()
(b) ![]()
(c) ![]()
(d) ![]()
Ans. (a )
3. If
then the value of x is:
(a) 0
(b) 1
(c) ![]()
(d) ![]()
Ans. (c)
4. The value of ![]()
(a) ![]()
(b) ![]()
(c) ![]()
(d) ![]()
Ans.(d)
5. The value of
is
(a) ![]()
(b) ![]()
(c) ![]()
(d)none of these
Ans. (d)
ONE MARK QUESTIONS WITH ANSWERS
1. the value of
.
Ans . ![]()
2. Evaluate ![]()
Ans. ![]()
3. Which is greater tan1 or tan-1 .
Ans. tan1 > tan-1
4.
state true or false.
Ans. False
5. Domain of function sin-1x is (-1,1), state true or false.
Ans. False
6. If
, then x is …….
Ans. 1
7. Find the value of ![]()
Ans. 0
Assertion- Reason Question
Assertion(A): Principal value branch of x is ![]()
Reason(R): In this branch the function is bijective
- Both A and R are true and R is the correct explanation for A.
- Both A and R are true and R is not the correct explanation for A.
(c) A is true but R is false.
(d) A is false but R is true.
Ans: (b)
THREE LEVELS OF GRADED QUESTIONS
Level I (Very Short Type Question)
1. Find the principal value of ![]()
Ans ![]()
2. Find the principal value of 
Ans ![]()
3. Find the principal value of ![]()
Ans
.
4. Find the value of
.
Ans ![]()
5. Find the value of
.
Ans ![]()
6. Find the value of ![]()
Ans 1
7. Find the principal value of ![]()
Ans ![]()
Level Il (SHORT TYPE QUESTION)
1. Find the value of ![]()
Ans ![]()
2. Find the value of ![]()
Ans ![]()
3. Write in simplest form: ![]()
Ans ![]()
4. Show that ![]()
5. prove that
, 0<x<![]()
6. Prove that ![]()
Level III (Long Type Question)
1. If
find the value of x.
2. Show that ![]()
3. If
, then show that xy+yz+zx=l
4. Prove that ![]()
5. Solve: ![]()
6. Simplify: 
7. Prove that ![Rendered by QuickLaTeX.com \displaystyle \left[ {{{{\cot }}^{{-1}}}\left\{ {\cos \left( {{{{\tan }}^{{-1}}}x} \right)} \right\}} \right]=\sqrt{{\frac{{\left( {{{x}^{2}}+1} \right)}}{{\left( {{{x}^{2}}-1} \right)}}}}](https://gyanpoints.com/wp-content/ql-cache/quicklatex.com-27ddc4640ce4a127b53ff299957ef3b0_l3.png)
8. If
prove that a + b + c = abc
Case based Question
Two men on either side of a temple of 30 m high observe its top at the angles of elevation a and ß respectively,

The distance between the two men is
m and the distance between the first person A and the temple is
m.
Answer the following questions using the above information.
(i) ∠CAB = α =
(a)
(b)
(c) 2 (d) ![]()
(ii) ∠CAB = α =
(a)
(b)
(c)
(d) ![]()
(iii) ∠BCA = β =
(a)
(b) 2 (c)
(d) ![]()
(iv) ∠ABC =
(a)
(b)
(c)
(d) ![]()
Ans:. (i) (b) (ii) (d) (iii) (d) (iv) (c)