Chapter 6 Applications of Derivatives

EXERCISE 6.2

Question 1: how that the function given by f(x) = 3x + 17 is strictly increasing on R.

Solution:

Let x1 and x2 be any two numbers in R.

Then,

\displaystyle {{x}_{1}}<{{x}_{2}}

\displaystyle \Rightarrow 3{{x}_{1}}+17<3{{x}_{2}}+17

\displaystyle \Rightarrow f({{x}_{1}})<f({{x}_{2}})

Thus, f is strictly increasing on R.

Question 2: Show that the function given by f(x) = e2x is strictly increasing on R.

Solution:

Let x1 and x2 be any two numbers in R.

Then,

x1 < x2 = 2x1< 2x2e2x1 < e2x2 = f(x1) < f(x2)

Thus, f is strictly increasing on R.

Question 3: Show that the function given by f(x) = sin x is

  1. Strictly increasing in \displaystyle \left( {0,\frac{\pi }{2}} \right)

(b) Strictly decreasing in \displaystyle \left( {\frac{\pi }{2},\pi } \right)

(c) Neither increasing nor decreasing in \displaystyle \left( {0,\pi } \right)

Solution:

It is given that f(x) = sin x

Hence, \displaystyle {{f}^{'}}\left( x \right)=\cos x

(a) Here, \displaystyle x\in \left( {0,\frac{\pi }{2}} \right)

⟹ cos x > 0

\displaystyle {{f}^{'}}\left( x \right)>0

Thus, f is strictly increasing in \displaystyle \left( {0,\frac{\pi }{2}} \right).

  1. Here, \displaystyle x\in \left( {\frac{\pi }{2},\pi } \right)

⟹ cos x < 0

\displaystyle {{f}^{'}}(x)<0

Thus, f is strictly decreasing in \displaystyle \left( {\frac{\pi }{2},\pi } \right).

  1. Here, x \displaystyle \in (0,π)

The results obtained in (a) and (b) are sufficient to state that f is neither increasing nor

decreasing in (0, π).

Question 4: Find the intervals in which the function f given by f(x) = 2x2 – 3x is

(a) Strictly increasing (b) Strictly decreasing

Solution:

The given function is f(x) = 2x2 – 3x

Hence, \displaystyle {{f}^{'}}\left( x \right)=4x-3

Therefore, \displaystyle {{f}^{'}}\left( x \right)=0

x = \displaystyle \frac{3}{4}

In \displaystyle \left( {-\infty ,\frac{3}{4}} \right),{{f}^{'}}\left( x \right)=4x-3<0

Hence, f is strictly decreasing in \displaystyle \left( {-\infty ,\frac{3}{4}} \right)

In \displaystyle \left( {\frac{3}{4},\infty } \right),{{f}^{'}}\left( x \right)=4x-3>0

Hence, f is strictly increasing in \displaystyle \left( {\frac{3}{4},\infty } \right).

Question 5: Find the intervals in which the function f given f(x) = 2x3 – 3x2 – 36x + 7 is

(a) Strictly increasing (b) Strictly decreasing

Solution:

The given function is f(x) = 2x3 – 3x2 – 36x + 7

Hence, f’(x) = 6x2 – 6x – 36

= 6(x2x – 6)

=6(x + 2)(x – 3)

Therefore, f’(x) = 0

⟹ x = -2, 3

In \displaystyle \left( {-\infty ,-2} \right) and \displaystyle \left( {3,\infty } \right), \displaystyle f'\left( x \right)>0

In (-2, 3), f’(x) < 0

Hence, f is strictly increasing in \displaystyle \left( {-\infty ,-2} \right),\left( {3,\infty } \right) and strictly decreasing in (-2, 3).

Question 6: Find the intervals in which the following functions are strictly increasing or decreasing.

(a) x2 + 2x – 5 (b) 10 – 6x – 2x2

(c) –2x3 – 9x2 – 12x + 1 (d) 6 – 9x – 9x2

(e) (x + 1)3 (x – 3)3

Solution: (a) f(x) = x2 + 2x – 5

Hence, f’(x) = 2x + 2

Therefore,

f’(x) = 0

x = 1

x = 1 divides the number line into intervals \displaystyle \left( {-\infty ,1} \right) and \displaystyle \left( {-1,\infty } \right)

In \displaystyle \left( {-\infty ,1} \right), f’(x) = 2x + 2 < 0

Thus, f is strictly decreasing in \displaystyle \left( {-\infty ,1} \right)

In \displaystyle \left( {-1,\infty } \right), f’(x) = 2x + 2 > 0

Thus, f is strictly increasing in \displaystyle \left( {-1,\infty } \right)

(b) f(x) = 10 – 6x – 2x2

Hence, \displaystyle {{f}^{'}}\left( x \right)=-6-4x

Therefore, f’(x) = 0

x = \displaystyle -\frac{3}{2}

x = \displaystyle -\frac{3}{2}, divides the number line into two intervals \displaystyle \left( {-\infty ,-\frac{3}{2}} \right) and \displaystyle \left( {-\frac{3}{2},\infty } \right)

In \displaystyle \left( {-\infty ,-\frac{3}{2}} \right), f’(x) = – 6 – 4x < 0

Hence, f is strictly increasing for \displaystyle \left( {x<-\frac{3}{2}} \right)

In \displaystyle \left( {-\frac{3}{2},\infty } \right), f’(x) = – 6 – 4x > 0

Hence, f is strictly increasing for \displaystyle \left( {x>-\frac{3}{2}} \right)

(c) f(x) = –2x3 – 9x2 – 12x + 1

Hence, f’(x) = – 6x2 – 18x – 12

= – 6(x2 + 3x + 2)

= – 6(x + 1)(x + 2)

Therefore, f’(x) = 0

⟹ x = – 1, 2

Therefore,

f’(x) = 0

x = – 1 , 2

x = – 1 and x = –2 divide the number line into intervals \displaystyle \left( {-\infty ,-2} \right),\left( {-2,-1} \right) and \displaystyle \left( {-1,\infty } \right).

In \displaystyle \left( {-\infty ,-2} \right) and \displaystyle \left( {-1,\infty } \right), f’(x) = – 6(x + 1)(x + 2) < 0

Hence, f is strictly decreasing for x < – 2 and x > – 1

In (-2,-1), f’(x) = – 6(x + 1)(x + 2) > 0

Hence f is strictly increasing in -2 < x < -1

(d) 6 – 9x – 9x2

Hence, f’(x) = – 9 – 2x

Therefore,

f’(x) = 0

x = \displaystyle -\frac{9}{2}

In \displaystyle \left( {-\frac{9}{2},\infty } \right), f’(x) < 0

Hence, f is strictly decreasing for \displaystyle \left( {x>-\frac{9}{2}} \right)

In \displaystyle \left( {-\infty ,-\frac{9}{2}} \right). f’(x) > 0

Hence, f is strictly decreasing in \displaystyle \left( {x>-\frac{9}{2}} \right)

(e) (x + 1)3 (x – 3)3

Hence,

f’(x) = 3(x + 1)2 (x – 3)3 + 3(x – 3)2 (x + 1)3

= 3(x + 1)2 (x – 3)2 {x – 3 + x + 1}

= 3(x + 1)2 (x – 3)2 (2x – 2)

= 6 (x + 1)2 (x – 3)2 (x – 1)

Therefore, f’(x) = 0

⟹x = –1,3,1

x = –1,3,1 divides the number line into four intervals \displaystyle \left( {-\infty ,-1} \right), (-1,1),(1,3) and \displaystyle \left( {3,\infty } \right)

In \displaystyle \left( {-\infty ,-1} \right) and (-1,1), f’(x) = 6(x+1)2(x-3)2(x-1) < 0

Hence, f is strictly decreasing in \displaystyle \left( {-\infty ,-1} \right) and (-1,1)

In (1,3) and \displaystyle \left( {3,\infty } \right), f’(x) = 6(x+1)2(x-3)2(x-1) > 0

Hence, f is strictly increasing in (1,3) and \displaystyle \left( {3,\infty } \right)

Question 7: Show that \displaystyle y=\log \left( {1+x} \right)-\frac{{2x}}{{2+x}},x>-1, is an increasing function of x throughout its domain.

Solution:

It is given that \displaystyle y=\log \left( {1+x} \right)-\frac{{2x}}{{2+x}}

Therefore,

\displaystyle \frac{{dy}}{{dx}}=\frac{1}{{1+x}}-\frac{{\left( {2+x} \right)\left( 2 \right)-2x\left( 1 \right)}}{{{{{\left( {2+x} \right)}}^{2}}}}

= \displaystyle \frac{1}{{1+x}}-\frac{4}{{{{{\left( {2+x} \right)}}^{2}}}}

= \displaystyle \frac{{{{x}^{2}}}}{{\left( {1+x} \right){{{\left( {2+x} \right)}}^{2}}}}

Now, \displaystyle \frac{{dy}}{{dx}}=0

Hence,

\displaystyle \frac{{{{x}^{2}}}}{{{{{\left( {2+x} \right)}}^{2}}}} = 0

x2 = 0

⟹x = 0

Since, x > – 1, x = 0 divides domain \displaystyle \left( {-1,\infty } \right) in two intervals – 1 < x < 0 and x > 0

When, – 1 < x < 0

Then,

x < 0 ⟹ x2 > 0

x > – 1 ⟹ (2 + x) > 0

⟹(2 + x)2 > 0

Hence, \displaystyle y=\frac{{{{x}^{2}}}}{{{{{\left( {2+x} \right)}}^{2}}}}>0

When, x > 0

Then,

x > 0 ⟹ x2 > 0

⟹(2 + x)2 > 0

Hence, \displaystyle y=\frac{{{{x}^{2}}}}{{{{{\left( {2+x} \right)}}^{2}}}}>0

Thus, f is increasing throughout the domain.

Question 8: Find the values of x for which y = [x (x – 2)]2 is an increasing function.

Solution:

We have, y = [x (x – 2)]2

= [x2 – 2x]2

Therefore,

\displaystyle \frac{{dy}}{{dx}}=\frac{d}{{dx}}{{\left[ {{{x}^{2}}-2x} \right]}^{2}}

= 2(x2 – 2x)(2x – 2)

= 4x(x – 2)(x – 1)

Now, \displaystyle \frac{{dy}}{{dx}} = 0

Hence, ⟹4x(x – 2)(x – 1)

x = 0, x = 2, x = 1

x = 0, x = 1 and x = 2 divide the number line intervals \displaystyle \left( {-\infty ,0} \right), (0,1),(1,2) and \displaystyle \left( {2,\infty } \right)

In \displaystyle \left( {-\infty ,0} \right) and (1,2), \displaystyle \frac{{dy}}{{dx}}<0

Hence, y is strictly decreasing in intervals \displaystyle \left( {-\infty ,0} \right) and (1,2)

In (0,1) and \displaystyle \left( {2,\infty } \right), \displaystyle \frac{{dy}}{{dx}}>0

Hence, y is strictly increasing in intervals (0,1) and \displaystyle \left( {2,\infty } \right)

Question 9: Prove that \displaystyle y=\frac{{4\sin \theta }}{{\left( {2+\cos \theta } \right)}}-\theta is an increment function of \displaystyle \theta in \displaystyle \left[ {0,\frac{\pi }{2}} \right].

Solution:

We have, \displaystyle y=\frac{{4\sin \theta }}{{\left( {2+\cos \theta } \right)}}-\theta

Therefore,

\displaystyle \frac{{dy}}{{d\theta }}=\frac{{\left( {2+\cos \theta } \right)\left( {4\cos \theta } \right)-4\sin \theta \left( {-\sin \theta } \right)}}{{{{{\left( {2+\cos \theta } \right)}}^{2}}}}-1

= \displaystyle \frac{{8\cos \theta +4{{{\cos }}^{2}}\theta +4{{{\sin }}^{2}}\theta }}{{{{{\left( {2+\cos \theta } \right)}}^{2}}}}-1

= \displaystyle \frac{{8\cos \theta +4}}{{{{{\left( {2+\cos \theta } \right)}}^{2}}}}-1

Now, \displaystyle \frac{{dy}}{{d\theta }}=0

Hence,

\displaystyle \frac{{8\cos \theta +4}}{{{{{\left( {2+\cos \theta } \right)}}^{2}}}}=1

⟹8cos𝜃 + 4 = 4 + cos2𝜃 + 4 cos𝜃

⟹ cos2𝜃 – 4 cos𝜃 = 0

⟹ cos𝜃 (cos𝜃 – 4) = 0

⟹ cos𝜃 = 0 or cos𝜃 = 4

Since, \displaystyle \cos \theta \ne 4

Therefore, cos𝜃 = 0

⟹𝜃 = \displaystyle \frac{\pi }{2}

Now,

\displaystyle \frac{{dy}}{{d\theta }}=\frac{{8\cos \theta +4-\left( {4+{{{\cos }}^{2}}\theta +4\cos \theta } \right)}}{{{{{\left( {2+\cos \theta } \right)}}^{2}}}}

= \displaystyle \frac{{4\cos \theta -{{{\cos }}^{2}}\theta }}{{{{{\left( {2+\cos \theta } \right)}}^{2}}}}

= \displaystyle \frac{{\cos \left( {4-\cos \theta } \right)}}{{{{{\left( {2+\cos \theta } \right)}}^{2}}}}

In interval \displaystyle \left[ {0,\frac{\pi }{2}} \right], we have cos𝜃 > 0

so, 4 > cos𝜃

⟹ 4 – cos𝜃 > 0

Hence, cos𝜃(4-cos𝜃) > 0 and (2 + cos𝜃)2 > 0

Therefore,

\displaystyle \frac{{\cos \left( {4-\cos \theta } \right)}}{{{{{\left( {2+\cos \theta } \right)}}^{2}}}}>0

Hence, \displaystyle \frac{{dy}}{{d\theta }}>0

So, y is strictly increasing in \displaystyle \left( {0,\frac{\pi }{2}} \right) and the given function is continuous at x = 0 and x = \displaystyle {\frac{\pi }{2}}

Thus, y is increasing in interval \displaystyle \left( {0,\frac{\pi }{2}} \right).

Question 10: Prove that the logarithmic function is strictly increasing on \displaystyle \left( {0,\infty } \right).

Solution:

The given function is f(x) = log x

Therefore, \displaystyle f'\left( x \right)=\frac{1}{x}

For, \displaystyle x>0,f'\left( x \right)=\frac{1}{x}>0

Thus, the logarithmic function is strictly increasing in interval \displaystyle \left( {0,\infty } \right).

Question 11: Prove that the function f given by f(x) = x2x + 1 is neither strictly increasing nor strictly decreasing on (-1,1)

Solution:

The given function is f(x) = x2x + 1

Therefore, f’(x) = 2x – 1

Now, f’(x) = 0

x = \displaystyle \frac{1}{2}

\displaystyle x=\frac{1}{2} divides the interval v into \displaystyle \left( {-1,\frac{1}{2}} \right) and \displaystyle \left( {\frac{1}{2},1} \right)

In interval \displaystyle \left( {\frac{1}{2},1} \right), f’(x) = 2x – 1 > 0

Hence, f is strictly decreasing in \displaystyle \left( {-1,\frac{1}{2}} \right)

In interval \displaystyle \left( {\frac{1}{2},1} \right), f’(x) = 2x – 1 >0

Hence, f is strictly increasing in \displaystyle \left( {\frac{1}{2},1} \right)

Thus, f is strictly increasing nor strictly decreasing in interval (-1,1)

Leave a Reply

Your email address will not be published. Required fields are marked *